Molecular manufacturing is the name given to a specific type of "bottom-up" construction technology. As its name implies, molecular manufacturing will be achieved when we are able to build things from the molecule up, and we will be able to rearrange matter with atomic precision. This technology does not yet exist; but once it does, we should have a thorough and inexpensive system for controlling of the structure of matter.
Other terms, such as molecular engineering or productive molecular nanosystems, are also often applied when describing this emerging technology.
The central thesis of nanotechnology is that almost any chemically stable structure that is not specifically disallowed by the laws of physics can in fact be built. The possibility of building things with atomic precision was first introduced by Richard Feynman in a famous after-dinner talk in 1959 when he said: "The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom."
Scientists have recently gained the ability to observe and manipulate atoms directly, but this is only one small aspect of a growing array of techniques in nanoscale science and technology. The ability to make commercial products may yet be a few decades away. But theoretical and computational models indicate that molecular manufacturing systems are possible - that they do not violate existing physical law. These models also give us a feel for what a molecular manufacturing system might look like. Today, scientists are devising numerous tools and techniques that will be needed to transform nanotechnology from computer models into reality. While most remain in the realm of theory, there appears to be no fundamental barrier to their development.