Sponser's Link

Archives

Live Feeds

Visitor Counter

SEARCH BOX

Nanomaterial ScienceNanomaterials are not simply another step in the miniaturization of materials. They often require very different production approaches. There are several processes to create nanomaterials, classified as ‘top-down’ and ‘bottom-up’. Although many nanomaterials are currently at the laboratory stage of manufacture, a few of them are being commercialised.Below we outline some examples of nanomaterials and the range of nanoscience that is aimed at understanding their properties. As will be seen, the behaviour of some nanomaterials is well understood, whereas others present greater challengesIt has been 25 years since the scanning tunneling microscope (STM) was invented, followed four years later by the atomic force microscope, and that's when nanoscience and nanotechnology really started to take off. Various forms of scanning probe microscopes based on these discoveries are essential for many areas of today's research. Scanning probe techniques have become the workhorse of nanoscience and nanotechnology research. Here is a Scanning Electron Microscope (SEM) image of a gold tip for Near-field Scanning Optical Microscopy (SNOM) obtained by Focussed Ion Beam (FIB) milling. The small tip at the center of the structure measures some tens of nanometers.
Gold Tip for SNOM, imaged by SEM, 2006, Gian Carlo Gazzadi and Pietro Gucciardi, with Lucia Covi.(www.s3.infm.it/blowup) From Blow Up. Images from the nanoworld, edited by S3 Research Center (INFM-CNR), Damiani, Bologna. © S3 National Research Center (INFM-CNR), Modena, ItalyCurrent applications of nanoscale materials include very thin coatings used, for example, in electronics and active surfaces (for example, self-cleaning windows). In most applications the nanoscale components will be fixed or embedded but in some, such as those used in cosmetics and in some pilot environmental remediation applications, free nanoparticles are used. The ability to machine materials to very high precision and accuracy (better than 100nm) is leading to considerable benefits in a wide range of industrial sectors, for example in the production of components for the information and communication technology, automotive and aerospace industries.

Sponser's Link